Trong không gian với hệ trục tọa độ \(Oxyz\), cho biết tứ diện \(ABCD\) có các đỉnh \(A\left( {1;2;1} \right)\), \(B\left( { - 2;1;3}

Câu hỏi :

Trong không gian với hệ trục tọa độ \(Oxyz\), cho tứ diện \(ABCD\) có các đỉnh \(A\left( {1;2;1} \right)\), \(B\left( { - 2;1;3} \right)\), \(C\left( {2; - 1;3} \right)\) và \(D\left( {0;3;1} \right)\). Phương trình mặt phẳng \(\left( \alpha  \right)\) đi qua \(A,B\) đồng thời cách đều \(C,D\)

A. \(\left( {{P_1}} \right):4x + 2y + 7z - 15 = 0;\)\(\,\left( {{P_2}} \right):x - 5y - z + 10 = 0\). 

B. \(\left( {{P_1}} \right):6x - 4y + 7z - 5 = 0;\)\(\,\left( {{P_2}} \right):3x + y + 5z + 10 = 0\). 

C. \(\left( {{P_1}} \right):6x - 4y + 7z - 5 = 0;\)\(\,\left( {{P_2}} \right):2x + 3z - 5 = 0\).

D. \(\left( {{P_1}} \right):3x + 5y + 7z - 20 = 0;\)\(\,\left( {{P_2}} \right):x + 3y + 3z - 10 = 0\). 

* Đáp án

D

* Hướng dẫn giải

Trường hợp 1:\(CD//\left( P \right)\)

\(\overrightarrow {{n_P}}  = \left[ {\overrightarrow {AB} ,\overrightarrow {CD} } \right] = \left( { - 6; - 10; - 14} \right)\)\(\, =  - 2\left( {3;5;7} \right)\)

\( \Rightarrow \left( P \right):3x + 5y + 7z - 20 = 0\)

Trường hợp 2:\(\left( P \right)\) đi qua trung điểm \(I\left( {1;1;2} \right)\) của \(CD\)

\(\overrightarrow {{n_P}}  = \left[ {\overrightarrow {AB} ,\overrightarrow {AI} } \right] = \left( {1;3;3} \right) \)

\(\Rightarrow \left( P \right):x + 3y + 3z - 10 = 0\).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Long Thới

Số câu hỏi: 49

Copyright © 2021 HOCTAP247