Cho biết số phức z thỏa mãn \(\overline z = \left( {1 - 3i} \right)\left( { - 2 + i} \right) = 2i\). Tính \(|z|\).

Câu hỏi :

Cho số phức z thỏa mãn \(\overline z  = \left( {1 - 3i} \right)\left( { - 2 + i} \right) = 2i\). Tính \(|z|\).

A. \(|z| = 2\).  

B. \(|z| = 5\sqrt 2 \). 

C. \(|z| = \sqrt {82} \).  

D. \(|z| = 4\sqrt 5 \). 

* Đáp án

C

* Hướng dẫn giải

Đặt \(z = x + yi\)

\(\begin{array}{l}x - yi - \left( {1 - 3i} \right)( - 2 + i) = 2i\\ \Leftrightarrow x - yi - ( - 2 + 7i - 3{i^2}) = 2i\\ \Leftrightarrow x - yi - 1 - 7i = 2i\\ \Rightarrow \left\{ \begin{array}{l}x - 1 = 0\\y + 7 =  - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y =  - 9\end{array} \right. \\\Rightarrow z = 1 - 9i\\ \Rightarrow \left| z \right| = \sqrt {1 + {{( - 9)}^2}}  = \sqrt {82} \end{array}\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Long Thới

Số câu hỏi: 49

Copyright © 2021 HOCTAP247