Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) có \(A(2;1; - 1),B(3;0;1),C(2; - 1;3)\) và \(D\) thuộc trục \(Oy\). Biết \({V_{ABCD}} = 5\) và có hai điểm \({D_1}\left( {0;{y_1};0}...

Câu hỏi :

Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) có \(A(2;1; - 1),B(3;0;1),C(2; - 1;3)\) và \(D\) thuộc trục \(Oy\). Biết \({V_{ABCD}} = 5\) và có hai điểm \({D_1}\left( {0;{y_1};0} \right),\,{D_2}\left( {0;{y_2};0} \right)\) thỏa mãn yêu cầu bài toán. Khi đó \({y_1} + {y_2}\) bằng

A. \(0.\)     

B. \(1\). 

C. \(2\). 

D. \(3\). 

* Đáp án

B

* Hướng dẫn giải

\(D \in Oy \Rightarrow D(0;y;0)\)

Ta có: \(\overrightarrow {AB}  = \left( {1; - 1;2} \right),\)\(\,\overrightarrow {AD}  = \left( { - 2;y - 1;1} \right),\overrightarrow {AC}  = \left( {0; - 2;4} \right)\)

\( \Rightarrow \left[ {\overrightarrow {AB} .\overrightarrow {AC} } \right] = \left( {0; - 4; - 2} \right) \)

\(\Rightarrow \left[ {\overrightarrow {AB} .\overrightarrow {AC} } \right].\overrightarrow {AD}  =  - 4y + 2\) \({V_{ABCD}} = 5 \)

\(\Leftrightarrow \dfrac{1}{6}\left| { - 4y + 2} \right| = 5 \Leftrightarrow y =  - 7;y = 8\)

\( \Rightarrow {D_1}\left( {0; - 7;0} \right),\,{D_2}\left( {0;8;0} \right) \Rightarrow {y_1} + {y_2} = 1\)

Copyright © 2021 HOCTAP247