Đồ thị các hàm số sau \(y = {{4x + 4} \over {x - 1}}\) và \(y = {x^2} - 1\) cắt nhau tại bao nhiêu điểm ?

Câu hỏi :

Đồ thị các hàm số \(y = {{4x + 4} \over {x - 1}}\) và \(y = {x^2} - 1\) cắt nhau tại bao nhiêu điểm ?

A. 0

B. 1

C. 2

D. 3

* Đáp án

C

* Hướng dẫn giải

Xét pt hoành độ giao điểm ta có:

\(\begin{array}{l}
\frac{{4x + 4}}{{x - 1}} = {x^2} - 1\left( {DK:x \ne 1} \right)\\
\Leftrightarrow 4x + 4 = \left( {{x^2} - 1} \right)\left( {x - 1} \right)\\
\Leftrightarrow 4\left( {x + 1} \right) = \left( {x + 1} \right){\left( {x - 1} \right)^2}\\
\Leftrightarrow \left( {x + 1} \right)\left( {{x^2} - 2x + 1 - 4} \right) = 0\\
\Leftrightarrow \left( {x + 1} \right)\left( {{x^2} - 2x - 3} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x + 1 = 0\\
{x^2} - 2x - 3 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = - 1\\
x = - 1\\
x = 3
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = - 1\\
x = 3
\end{array} \right.
\end{array}\)

Số giao điểm của 2 đồ thị hàm số \(y = \dfrac{{4x + 4}}{{x - 1}}\) và \(y = {x^2} - 1{\rm{ }}\) là nghiệm của pt \(\dfrac{{4x + 4}}{{x - 1}} = {x^2} - 1{\rm{ }}\)

\( \Rightarrow \) 2 đồ thị cắt nhau tại 2 điểm

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Bà Điểm

Số câu hỏi: 50

Copyright © 2021 HOCTAP247