Cho biết số phức \(z = - r\left( {\cos \varphi + i\sin \varphi } \right)\). Tìm một acgumen của z ?

Câu hỏi :

Cho số phức \(z =  - r\left( {\cos \varphi  + i\sin \varphi } \right)\). Tìm một acgumen của z ?

A. \( - \varphi \).    

B. \(\varphi  + 2\pi \). 

C. \(\varphi  - 2\pi \).  

D. \(\varphi  + \pi \). 

* Đáp án

A

* Hướng dẫn giải

\(\begin{array}{l}z = \dfrac{{5 + 5i}}{{3 - 4i}} + \dfrac{{20}}{{4 + 3i}}\\\,\,\,\, = \dfrac{{5\left( {1 + i} \right)\left( {3 + 4i} \right)}}{{9 - 16{i^2}}} + \dfrac{{20\left( {4 - 3i} \right)}}{{16 - 9{i^2}}}\\\,\,\,\, = \dfrac{{5(3 + 4{i^2} + 7i) + 20(4 - 3i)}}{{25}}\\\,\,\,\, = \dfrac{{5( - 1 + 7i) + 20\left( {4 - 3i} \right)}}{{25}} = 3 - i\end{array}\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Phú Hòa

Số câu hỏi: 49

Copyright © 2021 HOCTAP247