Tập hợp các điểm biểu diễn số phức z thỏa mãn \(|z + 1 + i|\, \le 2\) là;

Câu hỏi :

Tập hợp các điểm biểu diễn số phức z thỏa mãn \(|z + 1 + i|\, \le 2\) là;

A. Đường tròn tâm I(1 ; 1) bán kính R = 2.

B. Hình tròn tâm I(1; 1) bán kính R = 2. 

C. Đường tròn tâm I(- 1 ; - 1) bán kính R = 2. 

D. Hình tròn tâm I(- 1 ; - 1) bán kính R = 2. 

* Đáp án

D

* Hướng dẫn giải

Đặt \(z= x+yi\)

\(\begin{array}{l}\left| {z + 1 + i} \right| \le 2\\ \Rightarrow \left| {x + yi + 1 + i} \right| \le 2\\ \Leftrightarrow \left| {\left( {x + 1} \right) + \left( {y + 1} \right)} \right| \le 2\\ \Leftrightarrow \sqrt {{{\left( {x + 1} \right)}^2} + {{\left( {y + 1} \right)}^2}}  \le 2\end{array}\)

Vậy  tập hợp các điểm biểu diễn số phức z là hình tròn tâm I(-1, -1), bán kính bằng 2

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Phú Hòa

Số câu hỏi: 49

Copyright © 2021 HOCTAP247