A. \(\dfrac{{\sqrt {28} }}{4}{a^3}\)
B. \(\dfrac{{\sqrt {26} }}{4}{a^3}\)
C. \(\dfrac{{\sqrt 3 }}{{12}}{a^3}\)
D. \(\dfrac{{\sqrt {26} }}{{12}}{a^3}\)
D
Gọi H là giao điểm của các đường cao trong tam giác ABC
Vì là hình chóp đều nên chân đường cao hạ từ S xuống mặt phẳng (ABC) chính là H
Hay \(SH \bot \left( {ABC} \right)\)
Ta có: \(AH = \dfrac{2}{3}\sqrt {{a^2} - \dfrac{{{a^2}}}{4}} = \dfrac{{a\sqrt 3 }}{3}\)
\( \Rightarrow SH = \sqrt {S{A^2} - A{H^2}} = \sqrt {9{a^2} - \dfrac{{{a^2}}}{3}} = \dfrac{{a\sqrt {78} }}{3}\)
Khi đó
\(V = \dfrac{1}{3}SH.{S_{ABC}} = \dfrac{1}{3}.\dfrac{{a\sqrt {78} }}{3}.\dfrac{1}{2}.aa\sin {60^0} \)\(\,= \dfrac{{{a^3}\sqrt {26} }}{{12}}\)
Chọn đáp án D.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247