Hình chóp đều S.ABC có cạnh đáy bằng \(a\) và cạnh bên bằng \(3a\). Thể tích hình chóp S.ABC là ?

Câu hỏi :

Hình chóp đều S.ABC có cạnh đáy bằng \(a\) và cạnh bên bằng \(3a\). Thể tích hình chóp S.ABC là ?

A. \(\dfrac{{\sqrt {28} }}{4}{a^3}\)   

B. \(\dfrac{{\sqrt {26} }}{4}{a^3}\)  

C. \(\dfrac{{\sqrt 3 }}{{12}}{a^3}\)  

D. \(\dfrac{{\sqrt {26} }}{{12}}{a^3}\) 

* Đáp án

D

* Hướng dẫn giải

Gọi H là giao điểm của các đường cao trong tam giác ABC

Vì là hình chóp đều nên chân đường cao hạ từ S xuống mặt phẳng (ABC) chính là H

Hay \(SH \bot \left( {ABC} \right)\)

Ta có: \(AH = \dfrac{2}{3}\sqrt {{a^2} - \dfrac{{{a^2}}}{4}}  = \dfrac{{a\sqrt 3 }}{3}\)

\( \Rightarrow SH = \sqrt {S{A^2} - A{H^2}}  = \sqrt {9{a^2} - \dfrac{{{a^2}}}{3}}  = \dfrac{{a\sqrt {78} }}{3}\)

Khi đó

\(V = \dfrac{1}{3}SH.{S_{ABC}} = \dfrac{1}{3}.\dfrac{{a\sqrt {78} }}{3}.\dfrac{1}{2}.aa\sin {60^0} \)\(\,= \dfrac{{{a^3}\sqrt {26} }}{{12}}\)

Chọn đáp án D.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Phú Hòa

Số câu hỏi: 49

Copyright © 2021 HOCTAP247