Gọi x1, x2 là hai nghiệm của phương trình \({\log _3}^2x - 3{\log _3}x + 2 = 0\). Giá trị biểu thức \(P = {x_1}^2 + {x_2}^2\) bằng bao nhiêu ?

Câu hỏi :

Gọi x1, x2 là hai nghiệm của phương trình \({\log _3}^2x - 3{\log _3}x + 2 = 0\). Giá trị biểu thức \(P = {x_1}^2 + {x_2}^2\) bằng bao nhiêu ?

A. 20      

B. 92    

C. 90  

D. 9  

* Đáp án

C

* Hướng dẫn giải

Điều kiện: \(x > 0\)

Ta có: \({\log _3}^2x - 3{\log _3}x + 2 = 0\)

\(\Leftrightarrow \left( {{{\log }_3}x - 1} \right)\left( {{{\log }_3}x - 2} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}{\log _3}x = 1\\{\log _3}x = 2\end{array} \right. \)

\(\Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 9\end{array} \right.\)

Khi đó ta có: \(P = {x_1}^2 + {x_2}^2 = {3^2} + {9^2} = 90.\)

Chọn đáp án C.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Phú Hòa

Số câu hỏi: 49

Copyright © 2021 HOCTAP247