Số phức z thỏa mãn \(|z| = 5\) và phần thực của z bằng hai lần phần ảo của nó.

Câu hỏi :

Số phức z thỏa mãn \(|z| = 5\) và phần thực của z bằng hai lần phần ảo của nó.

A. \(\left[ \begin{array}{l}z = 2\sqrt 5  + i\sqrt 5 \\z =  - 2\sqrt 5  - i\sqrt 5 \end{array} \right.\).    

B. \(\left[ \begin{array}{l}z =  - 2\sqrt 5  + i\sqrt 5 \\z = 2\sqrt 5  - i\sqrt 5 \end{array} \right.\). 

C. \(\left[ \begin{array}{l}z = \sqrt 5  + 2\sqrt 5 i\\z =  - \sqrt 5  - 2\sqrt 5 i\end{array} \right.\).    

D. \(\left[ \begin{array}{l}z =  - \sqrt 5  + 2\sqrt 5 i\\z = \sqrt 5  - 2\sqrt 5 i\end{array} \right.\). 

* Đáp án

A

* Hướng dẫn giải

Đặt z= x+ yi                                 x,y\( \in \mathbb{Z}\)

Theo yêu cầu bài toán ta có:

 \(\begin{array}{l}\left\{ \begin{array}{l}\left| z \right| = 5\\x = 2y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left| {x + yi} \right| = 5\\x = 2y\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\sqrt {{x^2} + {y^2}}  = 5{\rm{     }}\left( 1 \right)\\x = 2y{\rm{             }}\left( 2 \right)\end{array} \right.\end{array}\)

Thay (2) vào (1), ta được:

\(\begin{array}{l}\sqrt {4{y^2} + {y^2}}  = 5 \Leftrightarrow 5{y^2} = 25\\ \Leftrightarrow {y^2} = 5\\ \Leftrightarrow \left[ \begin{array}{l}y = \sqrt 5  \Rightarrow x = 2\sqrt 5 \\y =  - \sqrt 5  \Rightarrow x =  - 2\sqrt 5   \end{array} \right.\end{array}\)

\( \Rightarrow z = 2\sqrt 5  + i\sqrt 5 \)

\(\Rightarrow z =  - 2\sqrt 5  - i\sqrt 5\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Phú Hòa

Số câu hỏi: 49

Copyright © 2021 HOCTAP247