A. \({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = 1\).
B. \({\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} = 1\).
C. \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 1\).
D. \({\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 1\).
A
Đặt \(z - i = {\rm{ }}x + yi\)
\(\begin{array}{l} \Rightarrow z = x + \left( {y + 1} \right)i\\\left| {z - 2 - 2i} \right| = 1\\ \Rightarrow \left| {x + (y + 1)i} \right| = 1\\ \Leftrightarrow \left| {(x - 2) + (y - 1)i} \right| = 1\\ \Leftrightarrow \sqrt {{{(x - 2)}^2} + {{(y - 1)}^2}} = 1\\ \Leftrightarrow {(x - 2)^2} + {(y - 1)^2} = 1\end{array}\)
\( \Rightarrow \) Tập hợp điểm biểu diễn số phức z trong mặt phẳng tọa độ là đường tròn có phương trình:\({(x - 2)^2} + {(y - 1)^2} = 1\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247