A. \(m \in ( - \infty ; - 1] \cup (0; + \infty )\)
B. \(m \in ( - 1;0)\)
C. \(m \in ( - \infty ; - 1) \cup [0; + \infty )\)
D. \(m \in ( - \infty ; - 1) \cup (0; + \infty )\)
D
\(y = (m + 1){x^4} - m{x^2} + 3\)
TXĐ: \(D = \mathbb{R}\)
\(y' = 4\left( {m + 1} \right){x^3} - 2mx\)
\(\begin{array}{l}y' = 0 \Leftrightarrow 4(m + 1){x^3} - 2mx = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \dfrac{{2m}}{{4m + 4}}{\rm{ (1)}}\end{array} \right.\end{array}\)
Để hàm số \(y = (m + 1){x^4} - m{x^2} + 3\) có 3 điểm cực trị thì (1) có 2 nghiệm phân biệt khác 0
\( \Leftrightarrow \)\(\dfrac{{2m}}{{4m + 4}} > 0 \Leftrightarrow \left[ \begin{array}{l}m > 0\\m < - 1\end{array} \right. \)
\(\Rightarrow m \in \left( { - \infty , - 1} \right) \cup \left( {0, + \infty } \right)\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247