Cho biểu thức \(A = i + {i^2} + {i^3} + ... + {i^{99}} + {i^{100}}\). Giá trị của A là:

Câu hỏi :

Cho biểu thức \(A = i + {i^2} + {i^3} + ... + {i^{99}} + {i^{100}}\). Giá trị của A là:

A. 0   

B.

C.  -1 

D. 100 

* Đáp án

A

* Hướng dẫn giải

Ta có: \(A = i + {i^2} + {i^3} + ... + {i^{99}} + {i^{100}}\)   

\( = i\left( {1 + {i^2}} \right) + {i^2}\left( {1 + {i^2}} \right) +  \ldots  + {i^{98}}\left( {1 + {i^2}} \right)\)

\( = i.0 + {i^2}.0 +  \ldots  + {i^{98}}.0 = 0\)         

Chọn đáp án A.

Copyright © 2021 HOCTAP247