Trong năm học là 2018-2019 trường THPT chuyên đại học Vinh có 13 học sinh khối 10, 12 học sinh khối 11, 12 học sinh khối 12. Nhân ngày nhà giáo Việt Nam 20 tháng 11 nhà trường chọn...

Câu hỏi :

Trong năm học 2018-2019 trường THPT chuyên đại học Vinh có 13 học sinh khối 10, 12 học sinh khối 11, 12 học sinh khối 12. Nhân ngày nhà giáo Việt Nam 20 tháng 11 nhà trường chọn ngẫu nhiên 2 lớp trong trường để tham gia hội văn nghệ của trường Đại học Vinh. Xác suất để chọn được hai lớp không cùng khối là:

A. \(\dfrac{{76}}{{111}}\)  

B. \(\dfrac{{87}}{{111}}\) 

C. \(\dfrac{{78}}{{111}}\) 

D. \(\dfrac{{67}}{{111}}\)  

* Đáp án

A

* Hướng dẫn giải

Cả 3 khối có tất cả \(13 + 12 + 12 = 37\) (học sinh).

Số cách chọn 2 học sinh bất kì là: \(C_{37}^2\) cách.

Gọi A là biến cố: “Chọn 2 học sinh không cùng khối” \( \Rightarrow \overline A \): “Chọn 2 học sinh cùng khối”.

Số cách chọn 2 học sinh cùng khối là \(C_{13}^2 + C_{12}^2 + C_{12}^2\) (cách) \( \Rightarrow n\left( {\overline A } \right) = C_{13}^2 + C_{12}^2 + C_{12}^2\)

Vậy xác suất của biến cố A là \(P\left( A \right) = 1 - \dfrac{{C_{13}^2 + C_{12}^2 + C_{12}^2}}{{C_{37}^2}} = \dfrac{{76}}{{111}}\).

Chọn A.

Copyright © 2021 HOCTAP247