A. \(h = \dfrac{{3a\sqrt {21} }}{7}\)
B. \(h = \dfrac{a}{{\sqrt {21} }}\)
C. \(h = \dfrac{{a\sqrt {21} }}{{14}}\)
D. \(h = \dfrac{{2a\sqrt {21} }}{7}\)
D
Gọi \(I\) là trung điểm của \(MC \Rightarrow BI \bot MC\;\)(vì \(\Delta BMC\) vuông cân).
Kẻ \(BH \bot B'I \Rightarrow BH \bot \left( {B'MC} \right)\)\( \Rightarrow d\left( {B,\left( {B'MC} \right)} \right) = BH.\)
Ta có tam giác \(BMC\) vuông cân tại \(B\) nên \(BI = \dfrac{{MC}}{2} = \dfrac{{a\sqrt 2 }}{2}\)
\(BH = \dfrac{{BB'.BI}}{{\sqrt {B{{B'}^2} + B{I^2}} }} = \dfrac{{a\sqrt {21} }}{7}\)\( \Rightarrow d\left( {B,\left( {MB'C} \right)} \right) = \dfrac{{a\sqrt {21} }}{7}.\)
Mặt khác gọi \(E\) là giao điểm của \(BD\) và \(MC \Rightarrow \dfrac{{d\left( {D,\left( {MB'C} \right)} \right)}}{{d\left( {B,\left( {MB'C} \right)} \right)}} = \dfrac{{ED}}{{EB}}\)\( = \dfrac{{DC}}{{MB}} = 2.\)
\( \Rightarrow d\left( {D,\left( {MB'C} \right)} \right) = 2d\left( {B,\left( {MB'C} \right)} \right) = \dfrac{{2a\sqrt {21} }}{7}.\)
Chọn D.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247