Tính diện tích S của hình phẳng giới hạn bởi đường thẳng \(y=2x+1\) và đồ thị hàm số \(y={{x}^{2}}-x+3\)

Câu hỏi :

Tính diện tích S của hình phẳng giới hạn bởi đường thẳng \(y=2x+1\) và đồ thị hàm số \(y={{x}^{2}}-x+3\)  

A. \(S=\frac{1}{7}\)  

B. \(S=\frac{1}{8}\)   

C. \(S=\frac{1}{6}\)  

D. \(S=-\frac{1}{6}\)  

* Đáp án

C

* Hướng dẫn giải

Xét phương trình hoành độ giao điểm:\(2x+1={{x}^{2}}-x+3\Leftrightarrow {{x}^{2}}-3x+2=0\Leftrightarrow \left[ \begin{align}  & x=1 \\  & x=2 \\ \end{align} \right.\)

\(\Rightarrow S=\int\limits_{1}^{2}{\left| {{x}^{2}}-x+3-2x-1 \right|dx}=\int\limits_{1}^{2}{\left| {{x}^{2}}-3x+2 \right|dx}\), sử dụng MTCT ta có:

Vậy \(S=\frac{1}{6}.\)

Chọn C.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Tân Phong

Số câu hỏi: 50

Copyright © 2021 HOCTAP247