Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)={{x}^{2}}{{\left( x-1 \right)}^{3}}\left( x-2 \right)\). Số điểm cực trị của hàm số \(f\left( x \right)\) bằng:

Câu hỏi :

Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)={{x}^{2}}{{\left( x-1 \right)}^{3}}\left( x-2 \right)\). Số điểm cực trị của hàm số \(f\left( x \right)\) bằng: 

A.

B.

C.

D.

* Đáp án

B

* Hướng dẫn giải

\(f'\left( x \right)={{x}^{2}}{{\left( x-1 \right)}^{3}}\left( x-2 \right)=0\Leftrightarrow \left[ \begin{align}  & x=0 \\  & x=1 \\  & x=2 \\ \end{align} \right.\)

\(x=0\) là nghiệm bội hai nên qua x = 0 thì f’(x) không đổi dấu, do đó x = 0 không là điểm cực trị của hàm số \(y=f\left( x \right)\).

Vậy hàm số đã cho có 2 điểm cực trị là x = 1 và x = 2.

Chọn B.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Tân Phong

Số câu hỏi: 50

Copyright © 2021 HOCTAP247