Tìm tập nghiệm S của bất phương trình \({{\log }_{2}}\left( 3x-2 \right)>{{\log }_{2}}\left( 6-5x \right)\).

Câu hỏi :

Tìm tập nghiệm S của bất phương trình \({{\log }_{2}}\left( 3x-2 \right)>{{\log }_{2}}\left( 6-5x \right)\). 

A. \(S=\left( 1;\frac{6}{5} \right)\)   

B. \(S=\left( \frac{2}{3};\frac{6}{5} \right)\)     

C. \(S=\left( 1;+\infty  \right)\)     

D. \(S=\left( \frac{2}{3};1 \right)\)  

* Đáp án

A

* Hướng dẫn giải

ĐK: \(\left\{ \begin{array}{l}
3x - 2 > 0\\
6 - 5x > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x > \frac{2}{3}\\
x < \frac{6}{5}
\end{array} \right. \Rightarrow \frac{2}{3} < x < \frac{6}{5}\)

\(\begin{array}{l}
{\log _2}\left( {3x - 2} \right) > {\log _2}\left( {6 - 5x} \right)\\
\Leftrightarrow 3x - 2 > 6 - 5x\\
\Leftrightarrow 8x > 8\\
\Leftrightarrow x > 1.
\end{array}\)

Kết hợp điều kiện ta có \(1< x < \frac{6}{5}\Rightarrow S=\left( 1; \frac{6}{5} \right)\).

Chọn A.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Tân Phong

Số câu hỏi: 50

Copyright © 2021 HOCTAP247