Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng \({d_1}:\dfrac{{x - 1}}{2} = \dfrac{y}{1} = \dfrac{{z + 2}}{{ - 2}},\) \({d_2}:\dfrac{{x + 2}}{{ - 2}} = \dfrac{{y - 1}}{{ -...

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng \({d_1}:\dfrac{{x - 1}}{2} = \dfrac{y}{1} = \dfrac{{z + 2}}{{ - 2}},\) \({d_2}:\dfrac{{x + 2}}{{ - 2}} = \dfrac{{y - 1}}{{ - 1}} = \dfrac{z}{2}\). Xét vị trí tương đối của hai đường thẳng đã cho.

A. Chéo nhau

B. Trùng nhau

C. Song song

D. Cắt nhau 

* Đáp án

C

* Hướng dẫn giải

Ta có: \({d_1}:\dfrac{{x - 1}}{2} = \dfrac{y}{1} = \dfrac{{z + 2}}{{ - 2}}\) có 1 véctơ chỉ phương là: \(\overrightarrow {{u_1}}  = \left( {2;1; - 2} \right)\)

          \({d_2}:\dfrac{{x + 2}}{{ - 2}} = \dfrac{{y - 1}}{{ - 1}} = \dfrac{z}{2}\)có 1 véctơ chỉ phương là: \(\overrightarrow {{u_2}}  = \left( { - 2; - 1;2} \right)\)

Ta có: \(\overrightarrow {{u_1}}  =  - \overrightarrow {{u_2}} \)

Lấy \(M\left( {1;0; - 2} \right) \in {d_1}\). Ta có \(\dfrac{{1 + 2}}{{ - 2}} \ne \dfrac{{0 - 1}}{{ - 1}} \Rightarrow M \notin {d_2}\).

Vậy \({d_1};\,\,{d_2}\) là hai đường thẳng song song.

Chọn C

Copyright © 2021 HOCTAP247