A. \(\left[ {\begin{array}{*{20}{c}}{x - y + 2z - 3 = 0}\\{x - y + 2z + 9 = 0}\end{array}} \right.\)
B. \(\left[ {\begin{array}{*{20}{c}}{x + y + 2z - 3 = 0}\\{x + y + 2z + 9 = 0}\end{array}} \right.\)
C. \(x + y + 2z + 9 = 0\)
D. \(x - y + 2z + 9 = 0\)
B
Ta có: \(\left( S \right)\) có tâm \(I\left( {1;\;0;\; - 2} \right)\) và bán kính \(R = \sqrt 6 .\)
\({d_1}\) có VTCP là: \(\overrightarrow {{u_1}} = \left( {3; - 1; - 1} \right),\) \({d_2}\) có VTCP là: \(\overrightarrow {{u_2}} = \left( {1;\;1; - 1} \right).\)
Ta có: \(\left\{ \begin{array}{l}\left( P \right) \bot {d_1}\\\left( P \right) \bot {d_2}\end{array} \right. \Rightarrow \overrightarrow {{n_P}} = \left[ {\overrightarrow {{u_1}} ,\;\overrightarrow {{u_2}} } \right] = \left( {2;\;2;\;4} \right) = 2\left( {1;\;1;\;2} \right).\)
Khi đó ta có phương trình \(\left( P \right)\) có dạng: \(x + y + 2z + d = 0.\)
Mặt phẳng \(\left( P \right)\) tiếp xúc với mặt cầu \(\left( S \right) \Rightarrow d\left( {I;\;\left( P \right)} \right) = R\)
\(\begin{array}{l} \Leftrightarrow \dfrac{{\left| {1 + 0 + 2.\left( { - 2} \right) + d} \right|}}{{\sqrt {{1^2} + {1^2} + {2^2}} }} = \sqrt 6 \Leftrightarrow \left| { - 3 + d} \right| = 6 \Leftrightarrow \left[ \begin{array}{l} - 3 + d = 6\\ - 3 + d = - 6\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}d = 9\\d = - 3\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}\left( {{P_1}} \right):\;\;\;x + y + 2z + 9 = 0\\\left( {{P_2}} \right):\;\;x + y + 2z - 3 = 0\end{array} \right..\end{array}\)
Chọn B.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247