Cho đường tròn \((T):{(x - 1)^2} + {(y + 2)^2} = 5\) và hai điểm A(3; -1), B(6; -2). Viết phương trình đường thẳng cắt (T) tại hai điểm C, D sao cho ABCD là hình bình hành.

Câu hỏi :

Cho đường tròn \((T):{(x - 1)^2} + {(y + 2)^2} = 5\) và hai điểm A(3; -1), B(6; -2). Viết phương trình đường thẳng cắt (T) tại hai điểm C, D sao cho ABCD là hình bình hành. 

A. \(x + 3y + 10 = 0\)

B. \(\left[ {\begin{array}{*{20}{c}}{x + 3y + 10 = 0}\\{x + 3y - 10 = 0}\end{array}} \right.\)

C. \(x + 3y - 10 = 0\)

D. \(\left[ {\begin{array}{*{20}{c}}{x + 3y = 0}\\{x + 3y + 10 = 0}\end{array}} \right.\)

* Đáp án

D

* Hướng dẫn giải

Đường tròn \(\left( T \right)\) có tâm \(I\left( {1; - 2} \right)\) và bán kính \(R = \sqrt 5 .\)

\(\overrightarrow {AB}  = \left( {3; - 1} \right) \Rightarrow AB = \sqrt {{3^2} + 1}  = \sqrt {10} .\)

\(ABCD\) là hình bình hành \( \Rightarrow AB//CD \Rightarrow CD\)  nhận \(\overrightarrow {AB} \) làm VTCP \( \Rightarrow CD\) nhận vecto \(\left( {1;\;3} \right)\) làm VTPT

\(CD:\;\;x + 3y + c = 0.\) 

Phương trình đường thẳng \(d\) đi qua \(I\left( {1; - 2} \right)\) và vuông góc với \(AB\) là:

\(3\left( {x - 1} \right) - \left( {y + 2} \right) = 0 \Leftrightarrow 3x - y - 1 = 0.\)

Ta có: \(d\left( {I;\;CD} \right) = \sqrt {{R^2} - {{\left( {\dfrac{{CD}}{2}} \right)}^2}}  = \sqrt {{R^2} - \dfrac{{A{B^2}}}{4}} \)

\(\begin{array}{l} \Leftrightarrow \dfrac{{\left| {1 + 3.\left( { - 2} \right) + c} \right|}}{{\sqrt {1 + {3^2}} }} = \sqrt {5 - \dfrac{{10}}{4}}  \Leftrightarrow \left| { - 5 + c} \right| = 5\\ \Leftrightarrow \left[ \begin{array}{l} - 5 + c = 5\\ - 5 + c =  - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}c = 10\\c = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}CD:\;\;x + 3y + 10 = 0\\CD:\;\;x + 3y = 0\end{array} \right..\end{array}\)

Chọn D.  

Copyright © 2021 HOCTAP247