A. \(m = - 3\)
B. \(m = 3\)
C. \(m = - 1\)
D. \(m = 1\)
D
Xét phương trình hoành độ giao điểm: \(x - m + 2 = \dfrac{{2x}}{{x - 1}}\,\,\left( {x \ne 1} \right)\).
\( \Leftrightarrow {x^2} - x + \left( { - m + 2} \right)x + m - 2 = 2x \Leftrightarrow g\left( x \right) = {x^2} - \left( {m + 1} \right)x + m - 2 = 0\,\,\left( * \right)\)
Để đường thẳng \(\left( d \right)\) cắt \(\left( C \right)\) tại 2 điểm phân biệt \( \Leftrightarrow pt\left( * \right)\) có 2 nghiệm phân biệt khác 1.
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta > 0\\g\left( 1 \right) \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - 1} \right)^2} - 4\left( {m - 2} \right) > 0\\1 - \left( {m + 1} \right) + m - 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 6m + 9 > 0\\1 - m - 1 + m - 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - 3} \right)^2} > 0\\ - 2 \ne 0\;\;\forall m \in \mathbb{R}\end{array} \right. \Leftrightarrow m \ne 3.\)
Gọi \({x_A},\,\,{x_B}\) là 2 nghiệm phân biệt của (*), áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_A} + {x_B} = m + 1\\{x_A}{x_B} = m - 2\end{array} \right.\).
Ta có:
\(\begin{array}{l}A{B^2} = {\left( {{x_B} - {x_A}} \right)^2} + {\left( {{y_B} - {y_A}} \right)^2} = {\left( {{x_B} - {x_A}} \right)^2} + {\left( {{x_B} - m + 2 - {x_A} + m - 2} \right)^2}\\\,\,\,\,\,\,\,\,\,\, = 2{\left( {{x_B} - {x_A}} \right)^2} = 2\left[ {{{\left( {{x_A} + {x_B}} \right)}^2} - 4{x_A}{x_B}} \right] = 2\left[ {{{\left( {m + 1} \right)}^2} - 4\left( {m - 2} \right)} \right]\\\,\,\,\,\,\,\,\,\,\, = 2\left( {{m^2} + 2m + 1 - 4m + 8} \right) = 2\left( {{m^2} - 2m + 9} \right) = 2{\left( {m - 1} \right)^2} + 16 \ge 16\end{array}\)
Ta có: \(A{B^2} \ge 16 \Leftrightarrow AB \ge 4\). Dấu “=” xảy ra \( \Leftrightarrow m = 1\;\;\left( {tm} \right)\).
Vậy \(m = 1\).
Chọn D.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247