Giá trị lớn nhất của hàm số \(y = \dfrac{{{x^3} + {x^2} - m}}{{x + 1}}\) trên \(\left[ {0;2} \right]\) bằng 5. Tham số \(m\) nhận giá trị là:

Câu hỏi :

Giá trị lớn nhất của hàm số \(y = \dfrac{{{x^3} + {x^2} - m}}{{x + 1}}\)  trên \(\left[ {0;2} \right]\) bằng 5. Tham số \(m\) nhận giá trị là: 

A. \( - 5\)        

B. \(1\)         

C. \( - 3\)    

D. \( - 8\) 

* Đáp án

C

* Hướng dẫn giải

\(y = \dfrac{{{x^3} + {x^2} - m}}{{x + 1}} = {x^2} - \dfrac{m}{{x + 1}}\) \( \Rightarrow y' = 2x + \dfrac{m}{{{{\left( {x + 1} \right)}^2}}} = \dfrac{{2x{{\left( {x + 1} \right)}^2} + m}}{{{{\left( {x + 1} \right)}^2}}}\)

+) Nếu \(m \ge 0\) thì \(y' \ge 0,\,\,\forall x \in \left[ {0;2} \right] \Rightarrow \mathop {\max }\limits_{\left[ {0;2} \right]} y = y\left( 2 \right) = \dfrac{{12 - m}}{3} = 5 \Rightarrow m =  - 3\) (loại)

+) Nếu \(m < 0\) thì \(y' = 0 \Leftrightarrow \) \(2x{\left( {x + 1} \right)^2} + m = 0 \Leftrightarrow 2{x^3} + 4{x^2} + 2x =  - m\) : có nhiều nhất 1 nghiệm trên đoạn [0;2] (do \(f\left( x \right) = 2{x^3} + 4{x^2} + 2x\) có \(f'\left( x \right) = 6{x^2} + 8x + 2 > 0,\,\,\forall x \in \left[ {0;2} \right]\))

Ta có: \(f\left( 0 \right) = 0,\,\,f\left( 2 \right) = 36\)

TH1: \(m \le  - 36\)

\(y' \ge 0,\forall x \in \left[ {0;2} \right] \Rightarrow \)\(\mathop {\max }\limits_{\left[ {0;2} \right]} y = y\left( 2 \right) = \dfrac{{12 - m}}{3} = 5 \Rightarrow m =  - 3\) (loại)

TH2: \( - 36 < m < 0\)

Phương trình \(y' = 0\) có 1 nghiệm duy nhất \({x_0} \in \left( {0;2} \right)\) và đổi dấu tại điểm này

Bảng biến thiên:

\( \Rightarrow \mathop {\max }\limits_{\left[ {0;2} \right]} y = \mathop {\max }\limits_{\left[ {0;2} \right]} \left\{ { - m;\dfrac{{12 - m}}{3}} \right\}\)

\(\mathop {\max }\limits_{\left[ {0;2} \right]} \left\{ { - m;\dfrac{{12 - m}}{3}} \right\} =  - m \Leftrightarrow  - m \ge \dfrac{{12 - m}}{3} \Leftrightarrow m \le  - 6\). Khi đó: \( - m = 5 \Leftrightarrow m =  - 5\): loại

\(\mathop {\max }\limits_{\left[ {0;2} \right]} \left\{ { - m;\dfrac{{12 - m}}{3}} \right\} = \dfrac{{12 - m}}{3} \Leftrightarrow  - m \le \dfrac{{12 - m}}{3} \Leftrightarrow m \ge  - 6\). Khi đó: \(\dfrac{{12 - m}}{3} = 5 \Leftrightarrow m =  - 3\): thỏa mãn

Vậy, \(m =  - 3\).

Chọn: C

Copyright © 2021 HOCTAP247