Gọi \(d\) là tiếp tuyến tại điểm cực đại của đồ thị hàm số \(y = {x^3} - 3x - 2\).

Câu hỏi :

Gọi \(d\) là tiếp tuyến tại điểm cực đại của đồ thị hàm số \(y = {x^3} - 3x - 2\). Khẳng định nào dưới đây đúng?

A. \(d\) có hệ số góc âm 

B. \(d\) có hệ số góc dương 

C. \(d\) song song với đường thẳng \(y=-4\)

D. \(d\) song song với trục Ox

* Đáp án

C

* Hướng dẫn giải

Hàm số đạt cực đại tại điểm \(x=-1\)

Tiếp tuyến của đồ thị hàm số tại điểm \(x=-1\) là \(y = y'\left( { - 1} \right)\left( {x + 1} \right) + y\left( { - 1} \right) = 0\)

Copyright © 2021 HOCTAP247