A. 4
B. \(\frac{2}{3}\)
C. 1
D. 5
C
Ta có \(y' = - 3{\left( {x - 1} \right)^2} + 3{m^2},y' = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 1 + m\\
x = 1 - m
\end{array} \right.\). Suy ra hai điểm cực trị của đồ thị hàm số đã cho là \(\left( {1 + m;2{m^3} - 2} \right),\left( {1 - m; - 2{m^3} - 2} \right)\). Hai điểm này cách đều gốc tọa độ nên:
\(\begin{array}{l}
{\left( {1 + m} \right)^2} + {\left( {2{m^3} - 2} \right)^2} = {\left( {1 - m} \right)^2} + {\left( { - 2{m^3} - 2} \right)^2}\\
\Leftrightarrow 4{m^3} - m = 0 \Leftrightarrow \left[ \begin{array}{l}
m = 0\\
m = \pm \frac{1}{2}
\end{array} \right.
\end{array}\)
Vậy S = 1
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247