Cho hình cầu tâm O bán kính R = 5, tiếp xúc với mặt phẳng (P). Một hình nón tròn xoay có đáy nằm trên (P), có chiều cao h = 15, có bán kính đáy bằng R. Hình cầu và hình nón nằm về một phía đối với mặt phẳng (P). Người ta cắt hai hình đó bởi mặt phẳng (Q) song song với (P) và thu được hai thiết diện có tổng diện tích là S. Gọi x là khoảng cách giữa (P) và (Q), \((0 < x \le 5)\). Biết rằng S đạt giá trị lớn nhất khi \(x = \frac{a}{b}\) (phân số \(\frac{a}{b}\) tối giản). Tính giá trị \(T = a + b\).