Hình chóp tam giác đều S.ABC có cạnh đáy là \(a\) và mặt bên tạo với đáy một góc \(45^0\).

Câu hỏi :

Hình chóp tam giác đều S.ABC có cạnh đáy là \(a\) và mặt bên tạo với đáy một góc \(45^0\). Tính theo a thể tích khối chóp S.ABC.

A. \(\frac{{{a^3}}}{8}\)

B. \(\frac{{{a^3}}}{24}\)

C. \(\frac{{{a^3}}}{12}\)

D. \(\frac{{{a^3}}}{4}\)

* Đáp án

B

* Hướng dẫn giải

Gọi H là tâm đường tròn ngoại tiếp tam giác đều ABC suy ra SH là đường cao.

Góc giữa mặt bên và đáy là góc giữa SM và AM vơí M là trung điểm của BC.

Tam giác ABC đều cạnh a nên \(AM = \frac{{a\sqrt 3 }}{2} \Rightarrow MH = \frac{1}{3}AM = \frac{{a\sqrt 3 }}{6}\) 

Tam giác vuông SHM có \(MH = \frac{{a\sqrt 3 }}{6},SMH = {45^0}\) nên \(SH = HM = \frac{{a\sqrt 3 }}{6}.\) 

Vậy thể tích \(V{}_{S.ABC} = \frac{1}{3}{S_{ABC}}.SH = \frac{1}{3}.\frac{{{a^2}\sqrt 3 }}{4}.\frac{{a\sqrt 3 }}{6} = \frac{{a{}^3}}{{24}}.\) 

Copyright © 2021 HOCTAP247