Cho hình chóp S.ABC có SA vuông góc với đáy, \(SA = a\sqrt 3 ,AB = a,BC = 2a,AC = a\sqrt 5 .\) Tính thể tích khối chóp S.

Câu hỏi :

Cho hình chóp S.ABC có SA vuông góc với đáy, \(SA = a\sqrt 3 ,AB = a,BC = 2a,AC = a\sqrt 5 .\) Tính thể tích khối chóp S.ABC theo \(a\).

A. \(2a{}^3\sqrt 3 \)

B. \(\frac{{2{a^3}\sqrt 3 }}{3}\)

C. \(\frac{{2{a^3}\sqrt 3 }}{3}\)

D. \({a^3}\sqrt 3 \)

* Đáp án

B

* Hướng dẫn giải

Xét tam giác ABC có \(AB{}^2 + B{C^2} = {a^2} + 4a{}^2 = 5{a^2} = A{C^2}\) nên tam giác ABC vuông tại B (Định lí Pytago đảo).

Thể tích \(V = \frac{1}{3}{S_{ABC}}.SA = \frac{1}{3}BA.BC.SA = \frac{1}{3}a.2a.a\sqrt 3  = \frac{{2{a^3}\sqrt 3 }}{3}\) 

Copyright © 2021 HOCTAP247