Gọi (a;b) là tập các giá trị của tham số m để phương trình \(2{e^{2x}} - 8{e^x} - m = 0\) có đúng hai nghiệm thuộc kho�

Câu hỏi :

Gọi (a;b) là tập các giá trị của tham số m để phương trình \(2{e^{2x}} - 8{e^x} - m = 0\) có đúng hai nghiệm thuộc khoảng (0; ln5). Tổng a + b là

A. 2

B. 4

C. - 6

D. - 14

* Đáp án

D

* Hướng dẫn giải

Đặt \(t=e^x\). Khi đó với \(x \in \left( {0;\ln 5} \right) \Rightarrow t \in \left( {{e^0};{e^{\ln 5}}} \right)\) hay \(t \in (1;5)\) 

Phương trình đã cho trở thành \(2t{}^2 - 8t - m = 0 \Leftrightarrow 2{t^2} - 8t = m\) với (t \in (1;5)\)  

Nhận thấy rẳng để phương trình đã cho có hai nghiệm phân biệt thuộc (0;ln5) thì phương trình \(2{t^2} - 8t = m\) có hai nghiệm phân biệt thuộc (1;5).

Xét \(f\left( t \right) = 2{t^2} - 8t \Rightarrow f'\left( t \right) = 4t - 8 = 0 \Leftrightarrow t = 2 \in (1;5)\) 

BBT của \(f(t)\) trên (1;5):

Từ BBT ta thấy phương trình \(2{t^2} - 8t = m\) có hai nghiệm phân biệt \(t \in (1;5)\) khi và chỉ khi \( - 8 < m <  - 6\) 

Vậy để phương trình \(2{e^{2x}} - 8{e^x} - m = 0\) có đúng hai nghiệm phân biệt thuộc khoảng (0;ln5) thì \(m \in ( - 8; - 6) \Rightarrow a =  - 8;b =  - 6 \Rightarrow a + b =  - 14.\) 

Copyright © 2021 HOCTAP247