Có bao nhiêu giá trị m nguyên thuộc khoảng (-10;10) để đồ thị hàm số \(y = \frac{{\sqrt {x\left( {x - m} \right) - 1} }}{{x + 2}}

Câu hỏi :

Có bao nhiêu giá trị m nguyên thuộc khoảng (-10;10) để đồ thị hàm số \(y = \frac{{\sqrt {x\left( {x - m} \right) - 1} }}{{x + 2}}\) có đúng ba đường tiệm cận?

A. 12

B. 11

C. 0

D. 10

* Đáp án

A

* Hướng dẫn giải

Ta có:

\(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {x\left( {x - m} \right)}  - 1}}{{x + 2}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\sqrt {1 - \frac{m}{x}}  - 1}}{{x + 2}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {1 - \frac{m}{x}}  - \frac{1}{x}}}{{1 + \frac{2}{x}}} = 1\) hay y = 1 là đường tiệm cận ngang của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {x\left( {x - m} \right)}  - 1}}{{x + 2}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{ - x\sqrt {1 - \frac{m}{x}}  - 1}}{{x + 2}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{ - \sqrt {1 - \frac{m}{x}}  - \frac{1}{x}}}{{1 + \frac{2}{x}}} =  - 1\) hay y = -1 là đường tiệm cận ngang của đồ thị hàm số.

Do đó bài toán thỏa khi và chỉ khi đồ thị hàm số chỉ có duy nhất một tiệm cận đứng.

Ta lại có: \(y = \frac{{\sqrt {x\left( {x - m} \right)}  - 1}}{{x + 2}} = \frac{{{x^2} - mx - 1}}{{\left( {x + 2} \right)(\sqrt {x\left( {x - m} \right)}  + 1)}}\) 

Để đồ thị hàm số chỉ có duy nhất một đường TCĐ thì x =- 2 không là nghiệm của tử và x=-2 thuộc tập xác định của hàm số.

\( \Leftrightarrow \left\{ \begin{array}{l}
 - 2( - 2 - m) \ge 0\\
{( - 2)^2} - m.( - 2) - 1 \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m \ge  - 2\\
2m + 3 \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m \ge  - 2\\
m \ne  - \frac{3}{2}
\end{array} \right..\) 

Do \(m \in ( - 10;10),m \in Z\) nên \(m \in \left\{ { - 2; - 1;0;1;...;8;9} \right\}\) và có 12 giá trị thỏa mãn.

Copyright © 2021 HOCTAP247