Giả sử phương trình (log 2 x)^2-(m+2)log 2 x+2m=0 có hai nghiệm thực

Câu hỏi :

Giả sử phương trình log22x-(m+2)log2x+2m=0 có hai nghiệm thực phân biệt x1,x2 thỏa mãn x1+x2=6. Giá trị của biểu thức x1-x2

A. 3.

B. 8.

C. 2.

D. 4.

* Đáp án

* Hướng dẫn giải

Chọn đáp án C

Phương pháp

+) Đặt điều kiện để phương trình có nghĩa.

+) Đặt ẩn phụ để giải phương trình: . Tìm điều kiện để phương trình có nghiệm.

+) Dựa vào dữ kiện tìm m. Từ đó tính .

Cách giải

Điều kiện: .

Đặt . Khi đó ta có phương trình:

(*)

 

Phương trình đã cho có hai nghiệm phân biệt:

có hai nghiệm phân biệt .

Ta có:

(tm).

.

Copyright © 2021 HOCTAP247