Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ bên. Mệnh đề nào dưới đây đúng

Câu hỏi :

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ bên. Mệnh đề nào dưới đây đúng?

A. \(a < 0,b < 0,c < 0,d > 0.\)

B. \(a > 0,b > 0,c < 0,d > 0.\)

C. \(a > 0,b < 0,c < 0,d > 0.\)

D. \(a > 0,b < 0,c > 0,d > 0.\)

* Đáp án

C

* Hướng dẫn giải

\(y' = 3a{x^2} + 2bx + c = 0\) có 2 nghiệm x1, x2 trái dấu (do hai điểm cực trị của đồ thị hàm số nằm hai phía với Oy) \( \Rightarrow 3ac < 0 \Rightarrow c < 0 \Rightarrow \) loại phương án D.

Dựa vào đồ thị thì ta thấy \({x_1} + {x_2} < 0 \Rightarrow \frac{{ - 2b}}{{3a}} > 0 \Rightarrow b < 0\) nên loại B.

Copyright © 2021 HOCTAP247