Gọi S là tập tất cả các giá trị nguyên của tham số thực m sao cho giá trị lớn nhất của hàm số \(y = \left| {\frac{1}{4

Câu hỏi :

Gọi S là tập tất cả các giá trị nguyên của tham số thực m sao cho giá trị lớn nhất của hàm số \(y = \left| {\frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30} \right|\) trên đoạn [0;2] không vượt quá 30. Tính tổng tất cả các phần tử của S.

A. 108

B. 120

C. 210

D. 136

* Đáp án

D

* Hướng dẫn giải

Đặt \(f\left( x \right) = \frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30\) là hàm số xác định và liên tục trên đoạn [0;2].

Ta có: \(f'\left( x \right) = {x^3} - 28x + 48.\) Với mọi \(x \in \left[ {0;2} \right]\) ta có \(f'\left( x \right) = 0 \Leftrightarrow {x^3} - 28x + 48 = 0 \Leftrightarrow x = 2.\) 

Mặt khác: \(f\left( 0 \right) = m - 30;f\left( x \right) = m + 14.\) Ta có: \(\mathop {\max }\limits_{[0;2]} \left| {f\left( x \right)} \right| = \max \left\{ {\left| {f\left( 0 \right)} \right|;\left| {f\left( 2 \right)} \right|} \right\}.\) 

Theo bài: \(\mathop {\max }\limits_{[0;2]} \left| {f\left( x \right)} \right| \le 30 \Leftrightarrow \left\{ \begin{array}{l}
\left| {f\left( 0 \right)} \right| \le 0\\
\left| {f\left( 2 \right)} \right| \le 30
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\left| {m - 30} \right| \le 30\\
\left| {m + 14} \right| \le 30
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
 - 30 \le m - 30 \le 30\\
 - 30 \le m + 14 \le 30
\end{array} \right..\) 

\( \Leftrightarrow \left\{ \begin{array}{l}
0 \le m \le 60\\
 - 44 \le m \le 16
\end{array} \right. \Leftrightarrow 0 \le m \le 16.\) Do \(m \in Z \Rightarrow m \in S = \left\{ {0;1;2;3;4;5;...;16} \right\}.\) 

Vậy tổng tất cả 17 giá trị trong tập S là \(\frac{{17\left( {0 + 16} \right)}}{2} = 136.\)      

Copyright © 2021 HOCTAP247