Rút gọn biểu thức \(P = \frac{{{{\left( {{a^{\sqrt 3  - 1}}} \right)}^{\sqrt 3  + 1}}}}{{{a^{4 - \sqrt 5 }}.

Câu hỏi :

Rút gọn biểu thức \(P = \frac{{{{\left( {{a^{\sqrt 3  - 1}}} \right)}^{\sqrt 3  + 1}}}}{{{a^{4 - \sqrt 5 }}.{a^{\sqrt 5  - 2}}}}\)  (với a > 0  và \(a \ne 1\))

A. P = 1

B. P = a

C. P = 2

D. P = a2

* Đáp án

A

* Hướng dẫn giải

\(P = \frac{{{{\left( {{a^{\sqrt 3  - 1}}} \right)}^{\sqrt 3  + 1}}}}{{{a^{4 - \sqrt 5 }}.{a^{\sqrt 5  - 2}}}} = \frac{{{a^{\left( {\sqrt 3  - 1} \right)\left( {\sqrt 3  + 1} \right)}}}}{{{a^{4 - \sqrt 5  + \sqrt 5  - 2}}}} = \frac{{{a^{3 - 1}}}}{{{a^2}}} = 1\)

Copyright © 2021 HOCTAP247