Trong tất cả các hình thang cân có cạnh bên bằng 2 và cạnh đáy nhỏ bằng 4, tính chu vi P của hình thang có diện tích l�

Câu hỏi :

Trong tất cả các hình thang cân có cạnh bên bằng 2 và cạnh đáy nhỏ bằng 4, tính chu vi P của hình thang có diện tích lớn nhất.

A. P = 12

B. P = 8

C. \(P = 10 + 2\sqrt 3 \)

D. \(5 + \sqrt 3 \)

* Đáp án

C

* Hướng dẫn giải

Gọi H là chân đường cao kẻ từ A đến CD ta có: \({S_{ABCD}} = \frac{{\left( {AB + CD} \right).AH}}{2}\)

Đặt AH  =x (0 < x < 2)

Khi đó áp dụng định lý Pi-ta-go ta có: \(DH = \sqrt {A{D^2} - A{H^2}}  = \sqrt {4 - {x^2}} \)

Ta có: \(DH = CK = \sqrt {4 - {x^2}}  \Rightarrow CD = 2\sqrt {4 - {x^2}}  + 4\)

\( \Rightarrow {S_{ABCD}} = \frac{{\left( {AB + CD} \right).AH}}{2} = \frac{{\left( {4 + 2\sqrt {4 - {x^2}}  + 4} \right).x}}{2} = \frac{{\left( {8 + 2\sqrt {4 - {x^2}} } \right)x}}{2}\)

Xét hàm số \(f\left( x \right) = \left( {8 + 2\sqrt {4 - {x^2}} } \right)x = 8x + 2x\sqrt {4 - {x^2}} \) (0 < x < 2)

Ta có: \(f'\left( x \right) = 8 + 2\sqrt {4 - {x^2}}  - \frac{{4{x^2}}}{{2\sqrt {4 - {x^2}} }} = 8 + \frac{{2\left( {4 - {x^2}} \right) - 2{x^2}}}{{\sqrt {4 - {x^2}} }} = 8 + \frac{{4\left( {2 - {x^2}} \right)}}{{\sqrt {4 - {x^2}} }}\)

\(\begin{array}{l}
 \Rightarrow f'\left( x \right) = 0 \Leftrightarrow 8 + \frac{{4\left( {2 - {x^2}} \right)}}{{\sqrt {4 - {x^2}} }} = 0 \Leftrightarrow 8\sqrt {4 - {x^2}}  + 4\left( {2 - {x^2}} \right) = 0\\
 \Leftrightarrow 2\sqrt {4 - {x^2}}  = {x^2} - 2 \Leftrightarrow \left\{ \begin{array}{l}
{x^2} - 2 \ge 0\\
4\left( {4 - {x^2}} \right) = {x^4} - 4{x^2} + 4
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{x^2} \ge 2\\
{x^4} = 12
\end{array} \right. \Leftrightarrow {x^2} = 2\sqrt 3 \,\,\left( {tm} \right)\\
 \Rightarrow {S_{\max }} \Leftrightarrow {x^2} = 2\sqrt 3  \Rightarrow CD = 2\sqrt {4 - 2\sqrt 3 }  + 4 = 2\left( {\sqrt 3  - 1} \right) + 4 = 2\sqrt 3  + 2
\end{array}\)

Khi đó chu vi của hình thang là:

\(P = AB + 2.AD + CD = 4 + 2.2 + 2\sqrt 3  + 2 = 10 + 2\sqrt 3 \)

Copyright © 2021 HOCTAP247