Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (-6; 5) sao cho hàm số \(f\left( x \right) =  - \sin 2x + 4\cos x + mx\sq

Câu hỏi :

Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (-6; 5) sao cho hàm số \(f\left( x \right) =  - \sin 2x + 4\cos x + mx\sqrt 2 \0 không có cực trị trên đoạn \(\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\)

A. 5

B. 4

C. 3

D. 2

* Đáp án

C

* Hướng dẫn giải

TXĐ: D = R

Ta có:

\(\begin{array}{l}
y' = 2\cos 2x - 4\sin x + m\sqrt 2  = 2\left( {1 - 2{{\sin }^2}x} \right) - 4\sin x + m\sqrt 2 \\
 =  - 4{\sin ^2}x - 4\sin x + 2 + m\sqrt 2 
\end{array}\)

Đặt t = sin x, với \(x \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right] \Rightarrow t \in \left[ { - 1;1} \right]\)

Khi đó \(y' =  - 4{t^2} - 4t + 2 + m\sqrt 2 {\rm{ }}\forall t \in \left[ { - 1;1} \right]\)

Để hàm số không có cực trị trên \(\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right] \Rightarrow \)  Phương trình y' = 0 không có nghiệm thuộc [=1; 1]

Xét  \(y' = 0 \Leftrightarrow  - 4{t^2} - 4t + 2 + m\sqrt 2  = 0{\rm{ }}\forall t \in \left[ { - 1;1} \right] \Leftrightarrow m\sqrt 2  = 4{t^2} + 4t - 2{\rm{ }}\forall t \in \left[ { - 1;1} \right]\)

Xét \(y' = 0 \Leftrightarrow  - 4{t^2} - 4t + 2 + m\sqrt 2  = 0{\rm{ }}\forall t \in \left[ { - 1;1} \right] \Leftrightarrow m\sqrt 2  = 4{t^2} + 4t - 2{\rm{ }}\forall t \in \left[ { - 1;1} \right]\)

\( \Leftrightarrow m\sqrt 2  = f\left( t \right) = 4{t^2} + 4t - 2{\rm{ }}\forall t \in \left[ { - 1;1} \right]\)

Ta có \(f'\left( t \right) = 8t + 4 = 0 \Leftrightarrow t = \frac{{ - 1}}{2}\)

BBT:

Để phương trình không có nghiệm thuộc \(\left[ { - 1;1} \right] \Rightarrow \left[ \begin{array}{l}
m\sqrt 2  <  - 3\\
m\sqrt 2  > 6
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
m < \frac{{ - 3}}{{\sqrt 2 }}\\
m > 3\sqrt 2 
\end{array} \right.\)

Kết hợp điều kiện đề bài \(m \in \left\{ { - 5; - 4; - 3} \right\}\)

Copyright © 2021 HOCTAP247