A. \(m = - \frac{3}{2}\0
B. \(m = \frac{5}{2}\)
C. \(m = \frac{{ - 5}}{2}\)
D. \(m = \frac{3}{2}\)
D
Ta có:
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \frac{{{x^2} + 3x + 2}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \frac{{x + 2}}{{x - 1}} = \frac{{ - 1}}{2}\\
\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \left( {mx + 2} \right) = - m + 2\\
f\left( { - 1} \right) = - m + 2
\end{array}\)
Để hàm số liên tục tại \(x = - 1 \Rightarrow \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} f\left( x \right) = f\left( { - 1} \right) \Rightarrow - m + 2 = \frac{{ - 1}}{2} \Leftrightarrow m = \frac{5}{2}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247