A. \(V = \frac{{125\left( {1 + \sqrt 2 } \right)\pi }}{6}\)
B. \(V = \frac{{125\left( {5 + 2\sqrt 2 } \right)\pi }}{{12}}\)
C. \(V = \frac{{125\left( {5 + 4\sqrt 2 } \right)\pi }}{{24}}\)
D. \(V = \frac{{125\left( {2 + \sqrt 2 } \right)\pi }}{4}\)
C
Khi ta quay hình thứ nhất quay trục XY, ta được 2 hình nón ghép lại với nhau trong đó:
\(h = \frac{{\sqrt {{5^2} + {5^2}} }}{2} = \frac{{5\sqrt 2 }}{2} = r\).
Áp dụng công thức thể tích ta có:
\({V_1} = 2.\frac{1}{3}\pi r{h^2} = 2.\frac{1}{3}.\pi {\left( {\frac{{5\sqrt 2 }}{2}} \right)^3} = \frac{{125\pi }}{{3\sqrt 2 }}.\)
Khi ta quay hình còn lại theo trục XY thì ta được hình trụ có chiều cao là 5, bán kính \(r = \frac{5}{2}.\).
Áp dụng công thức thể tích ta có:
\({V_2} = S.h = \pi {r^2}h = \frac{{125\pi }}{4}.\)
Phần bị trùng sẽ là tam giác vuông của 2 hình vuông đè vào nhau, là 1 hình nón
\(r = h = \frac{5}{2} \Rightarrow {V_3} = \frac{1}{3}\pi {r^2}h = \frac{{125\pi }}{{24}}.\)
Như vậy:
\(V = 125\pi \left( {\frac{1}{{3\sqrt 2 }} + \frac{1}{4} - \frac{1}{{24}}} \right) \)
\(= \frac{{125\pi \left( {5 + 4\sqrt 2 } \right)}}{{24}}.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247