Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = {\left| x \right|^3} - \left( {2m + 1} \right){x^2} + 3m\left| x \right| - 5

Câu hỏi :

Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = {\left| x \right|^3} - \left( {2m + 1} \right){x^2} + 3m\left| x \right| - 5\) có ba điểm cực trị?

A. Vô số 

B. 3

C. 2

D. 1

* Đáp án

A

* Hướng dẫn giải

Đồ thị hàm số \(y = {\left| x \right|^3} - \left( {2m + 1} \right){x^2} + 3m\left| x \right| - 5\) nhận trục tung làm trục đối xứng nên hàm số có ba điểm cực trị khi và chỉ khi hàm số \(y = f\left( x \right) = {x^3} - \left( {2m + 1} \right){x^2} + 3mx - 5\) có hai điểm cực trị trong đó chỉ có duy nhất một cực trị dương.

Ta có \(f'\left( x \right) = 3{x^2} - 2\left( {2m + 1} \right)x + 3m\) 

TH1: Hàm số \(y=f(x)\) có 1 cực trị x = 0 và 1 cực trị x > 0. Khi đó:

\(f'\left( 0 \right) = 0 \Leftrightarrow 3m = 0 \Leftrightarrow m = 0 \Rightarrow f'\left( x \right) = 3{x^2} - 2x = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = \frac{2}{3}\left( {TM} \right)
\end{array} \right.\). Vậy nhận giá trị m = 0 

TH2: Hàm số \(y=f(x)\) có hai cực trị trái dấu \( \Leftrightarrow f'\left( x \right) = 0\) có hai nghiệm trái dấu \( \Leftrightarrow 3m.3 < 0 \Leftrightarrow m < 0\) 

Vậy với \(m \le 0\) thì thỏa mãn yêu cầu nên có vô số giá trị nguyên thỏa mãn đề bài.

Copyright © 2021 HOCTAP247