A. (0;1)
B. (1;2)
C. (2;3)
D. (3;4)
B
Phương trình hoành độ giao điểm của (C) và (P) là \({x^3} + a{x^2} + bx + c = m{x^2} + nx + p\)
\( \Leftrightarrow {x^3} + \left( {a - m} \right){x^2} + \left( {b - n} \right)x + c - p = 0(*)\)
Dựa vào đồ thị ta thấy hai đồ thị hàm số tiếp xúc nhau tại điểm có hoành độ x = - 1 và cắt nhau tại điểm có hoành độ x = 1 nên phương trình (*) có nghiệm x = - 1 (bội 2) và x = 1 (nghiệm đơn).
Viết lại (*) ta được \({\left( {x + 1} \right)^2}\left( {x - 1} \right) = 0\)
Vậy \(S = \int\limits_{ - 1}^1 {\left| {{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)} \right|dx} = \int\limits_{ - 1}^1 {{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)dx} = \frac{4}{3} \in \left( {1;2} \right)\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247