Cho \(f\left( x \right),g\left( x \right)\) là các hàm số có đạo hàm liên tục trên \(R,k \in R\). Trong các khẳng định dưới đây, khẳng định nào sai?

Câu hỏi :

Cho \(f\left( x \right),g\left( x \right)\) là các hàm số có đạo hàm liên tục trên \(R,k \in R\). Trong các khẳng định dưới đây, khẳng định nào sai?

A. \(\int {\left[ {f\left( x \right) - g\left( x \right)} \right]dx = \int {f\left( x \right)dx - \int {g\left( x \right)dx} } } \)

B. \(\int {f'\left( x \right)dx = f\left( x \right) + C} \)

C. \(\int {kf\left( x \right)dx = k\int {f\left( x \right)dx} } \)

D. \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int {f\left( x \right)dx + \int {g\left( x \right)dx} } \)

* Đáp án

C

* Hướng dẫn giải

Đáp án A, D đúng theo tính chất tổng, hiệu các nguyên hàm.

Đáp án B đúng theo nhận xét về định nghĩa nguyên hàm.

Đáp án C sai, tính chất này chỉ đúng với \(k \ne 0\)

Copyright © 2021 HOCTAP247