A. I = 1
B. I = 2
C. I = 3
D. I = 0
A
Ta có: \(\int\limits_0^2 {\left[ {f\left( x \right) - 3g\left( x \right)} \right]dx = 4 \Rightarrow \int\limits_0^2 {f\left( x \right)dx - 3\int\limits_0^2 {g\left( x \right)dx = 4\,\,\,\left( 1 \right)} } } \)
\(\int\limits_0^2 {\left[ {2f\left( x \right) + g\left( x \right)} \right]dx = 8 \Rightarrow 2\int\limits_0^2 {f\left( x \right)dx + \int\limits_0^2 {g\left( x \right)dx = 8\,\,\,\left( 2 \right)} } } \)
Từ (1) và (2) suy ra \(\left\{ \begin{array}{l}
\int\limits_0^2 {f\left( x \right)dx - 3\int\limits_0^2 {g\left( x \right)dx = 4} } \\
2\int\limits_0^2 {f\left( x \right)dx + \int\limits_0^2 {g\left( x \right)dx = 8} }
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\int\limits_0^2 {f\left( x \right)dx = 4} \\
\int\limits_0^2 {g\left( x \right)dx = 0}
\end{array} \right.\)
\( \Rightarrow 4 = \int\limits_0^2 {f\left( x \right)dx = \int\limits_0^1 {f\left( x \right)dx + \int\limits_1^2 {f\left( x \right)dx = 3 + \int\limits_1^2 {f\left( x \right)dx \Rightarrow \int\limits_1^2 {f\left( x \right)dx = 4 - 3 = 1} } } } } \)
Vậy \(\int\limits_1^2 {f\left( x \right)dx = 1} \)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247