A. \(\left\{ \begin{array}{l} x = 3 + 3t\\ y = 2 - 5t\\ z = 1 + 4t \end{array} \right.\)
B. \(\left\{ \begin{array}{l} x = 1 + 3t\\ y = 1 - 5t\\ z = 1 + 4t \end{array} \right.\)
C. \(\left\{ \begin{array}{l} x = 1 + 9t\\ y = 1 - 10t\\ z = 1 + 22t \end{array} \right.\)
D. \(\left\{ \begin{array}{l} x = 3 + 9t\\ y = 2 - 10t\\ z = 1 + 22t \end{array} \right.\)
D
Ta có đường thẳng d đi qua M(0;0;3), VTCP \(\overrightarrow a = \left( {2;4;1} \right)\)
Gọi \(\left ( \alpha \right )\) là mặt phẳng đi qua A và vuông góc với d.
\(\left( \alpha \right) \bot \left( d \right)\) nên \(\left ( \alpha \right )\) nhận \(\overrightarrow {{n_a}} = \left( {2;4;1} \right)\) làm VTPT.
Phương trình \(\left( \alpha \right):2\left( {x - 3} \right) + 4\left( {y - 2} \right) + 1\left( {z - 1} \right) = 0\)
\(\Leftrightarrow 2x + 4y + z - 15 = 0\)
Phương trình tham số của d là: \(\left\{ \begin{array}{l} x = 2t\\ y = 4t\\ z = - 3 + t \end{array} \right.\)
Thế vào phương trình \(\left( \alpha \right):2\left( {2t} \right) + 4\left( {4t} \right) + \left( { - 3 + t} \right) - 15 = 0 \Rightarrow t = \frac{6}{7}\)
Vậy \(d \cap \left( \alpha \right)\) tại \(B\left( {\frac{{12}}{7};\frac{{24}}{7};\frac{{ - 15}}{7}} \right) \Rightarrow \overrightarrow {AB} = \left( { - \frac{9}{7};\frac{{10}}{7}; - \frac{{22}}{7}} \right).\)
Vậy phương trình đường thẳng qua A, cắt vuông góc d là:
\(AB:\left\{ \begin{array}{l} x = 3 + 9t\\ y = 2 - 10t\\ z = 1 + 22t \end{array} \right.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247