Tính đạo hàm của hàm số y = frac{{x + 3}}{{{9^x}}}

Câu hỏi :

Tính đạo hàm của hàm số \(y = \frac{{x + 3}}{{{9^x}}}\)

A. \(y' = \frac{{1 - 2\left( {x + 3} \right)\ln 3}}{{{3^{2x}}}}\)

B. \(y' = \frac{{1 + 2\left( {x + 3} \right)\ln 3}}{{{3^{2x}}}}.\)

C. \(y' = \frac{{1 - 2\left( {x + 3} \right)\ln 3}}{{{3^{{x^2}}}}}.\)

D. \(y' = \frac{{1 + 2\left( {x + 3} \right)\ln 3}}{{{3^{{x^2}}}}}\)

* Đáp án

A

* Hướng dẫn giải

Ta có: \(y = \frac{{x + 3}}{{{9^x}}} = \left( {x + 3} \right).{\left( {\frac{1}{9}} \right)^x} \)

\(\Rightarrow y' = {\left( {\frac{1}{9}} \right)^x} + \left( {x + 3} \right){\left( {\frac{1}{9}} \right)^x}\ln \frac{1}{9}\)

\(\begin{array}{l}
 = \frac{{1 + \left( {x + 3} \right)\ln \frac{1}{9}}}{{{9^x}}} = \frac{{1 - \left( {x + 3} \right)\ln 9}}{{{{\left( {{3^2}} \right)}^x}}}\\
 = \frac{{1 - \left( {x + 3} \right)\ln {3^2}}}{{{3^{2x}}}} = \frac{{1 - 2\left( {x + 3} \right)\ln 3}}{{{3^{2x}}}}.
\end{array}\)

Copyright © 2021 HOCTAP247