Bất phương trình:\({\log _2}^2x - 4038{\log _2}x + {2019^2} + {x^2} - {2^{2020}}x + {2^{4038}} \le 0\)có tập nghiệm là:

Câu hỏi :

Bất phương trình:\({\log _2}^2x - 4038{\log _2}x + {2019^2} + {x^2} - {2^{2020}}x + {2^{4038}} \le 0\)

A. \(S = {\rm{ }}\left[ {{2^{2019}}; + \infty } \right)\)

B. \(S = \left( { - \infty ;2020} \right)\)

C. \(S = \left\{ {{2^{2019}}} \right\}\)

D. \(S = \left( {2019; + \infty } \right)\)

* Đáp án

C

* Hướng dẫn giải

\(\begin{array}{l}
{\log _2}^2x - 4038{\log _2}x + {2019^2} + {x^2} - {2^{2020}}x + {2^{4038}} \le 0\\
 \Leftrightarrow {\left( {{{\log }_2}x - 2019} \right)^2} + {\left( {x - {2^{2019}}} \right)^2} \le 0\\
 \Leftrightarrow \left\{ \begin{array}{l}
{\log _2}x - 2019 = 0\\
x - {2^{2019}} = 0
\end{array} \right. \Leftrightarrow x = {2^{2019}}
\end{array}\)

Copyright © 2021 HOCTAP247