Chọn ngẫu nhiên một số từ tập các số tự nhiên có ba chữ số đôi một khác nhau.

Câu hỏi :

Chọn ngẫu nhiên một số từ tập các số tự nhiên có ba chữ số đôi một khác nhau. Xác suất để số được chọn có tổng các chữ số là chẵn bằng

A. \(\frac{41}{81}\)                                 

B. \(\frac{4}{9}\)                          

C.  \(\frac{1}{2}\)                               

D. \(\frac{16}{81}\)

* Đáp án

A

* Hướng dẫn giải

Gọi A là biến cố: “ Số được chọn có tổng các chữ số là chẵn ”.
Ta có \(\left| \Omega  \right|=9.A_{9}^{2}=648\).
Vì số được chọn có tổng các chữ số là chẵn nên có 2 trường hợp:
TH1: Cả 3 chữ số đều chẵn.
* Có mặt chữ số 0
Chọn 2 chữ số chẵn còn lại có \(C_{4}^{2}\), => có \(\left( 3!-2 \right)C_{4}^{2}=24\) số.
* Không có mặt chữ số 0
Chọn 3 chữ số chẵn có \(C_{4}^{3}\), => có \(3!C_{4}^{3}=24\) số.
TH2: 2 chữ số lẻ và 1 chữ số chẵn.
* Có mặt chữ số 0
Chọn 2 chữ số lẻ có \(C_5^2\), => có \(\left( {3! - 2} \right)C_5^2 = 40\) số.

* Không có mặt chữ số 0
Chọn 2 chữ số lẻ có \(C_5^2\), chọn 1 chữ số chẵn có 4, => có \(3!4.C_5^2 = 240\) số.
\( \Rightarrow \left| {{\Omega _A}} \right| = 24 + 24 + 40 + 240 = 328\)
Vậy \(P\left( A \right) = \frac{{328}}{{648}} = \frac{{41}}{{81}}\)

 

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi minh họa THPTQG môn Toán năm 2020 Bộ GD&ĐT

Số câu hỏi: 50

Copyright © 2021 HOCTAP247