A. (1; 2)
B. [1; 2]
C. [1; 2)
D. \(\text{ }\!\![\!\!\text{ }2;+\infty )\)
C
Điều kiện: \(x>0\)
\(pt\Leftrightarrow {{\left( 1+{{\log }_{2}}x \right)}^{2}}-\left( m+2 \right){{\log }_{2}}x+m-2=0\)
\( \Leftrightarrow \log _2^2x - m{\log _2}x + m - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}
{\log _2}x = 1\\
{\log _2}x = m - 1
\end{array} \right.\)
Ta có: \(x\in \left[ 1\,;\,2 \right]\Leftrightarrow {{\log }_{2}}x\in \left[ 0\,;\,1 \right]\)
Vậy để phương trình đã cho có 2 nghiệm phân biệt thuộc đoạn \(\left[ 1\,;\,2 \right]\) khi và chỉ khi \(0\le m-1<1\Leftrightarrow 1\le m<2\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247