Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{\frac{{2{x^2} - 3x + 1}}{{x - 1}}{\rm{khi}}x \ne 1}\\{{\rm{2}}a + {\rm{1 khi

Câu hỏi :

Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}
{\frac{{2{x^2} - 3x + 1}}{{x - 1}}{\rm{khi}}x \ne 1}\\
{{\rm{2}}a + {\rm{1 khi }}x = 1}
\end{array}} \right.\) Tìm giá trị của tham số a để hàm số \(f\left( x \right)\) liên tục tại \(x=1\).

A. a = 4

B. a = 1

C. a = 0

D. a = 3

* Đáp án

C

* Hướng dẫn giải

Ta có:\(f\left( 1 \right)=2a+1\) và \(\underset{x\to 1}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to 1}{\mathop{\lim }}\,\frac{2{{x}^{2}}-3x+1}{x-1}=\underset{x\to 1}{\mathop{\lim }}\,\left( 2x-1 \right)=1\).

Hàm số \(f\left( x \right)\) liên tục tại \(x=1\Leftrightarrow 2a+1=1\Leftrightarrow a=0\).

Copyright © 2021 HOCTAP247