A. \(y={{x}^{3}}-3x+2\)
B. \(y=-2{{x}^{3}}+3{{x}^{2}}-1\)
C. \(y={{x}^{4}}-2{{x}^{2}}-1\)
D. \(y=-{{x}^{4}}+4{{x}^{2}}\)
C
Ta nhận thấy 3 hàm số: \(y={{x}^{3}}-3x+2\),\(y=-2{{x}^{3}}+3{{x}^{2}}-1\), \(y=-x^4+4x^2\) đều không có giá trị nhỏ nhất trên tập xác định \(\mathbb{R}\) do
\(\underset{x\to -\infty }{\mathop{\lim }}\,\left( {{x}^{2}}-3x+2 \right)=\underset{x\to +\infty }{\mathop{\lim }}\,\left( -2{{x}^{3}}+3{{x}^{2}}-1 \right)=\underset{x\to \pm \infty }{\mathop{\lim }}\,\left( -{{x}^{4}}+4x \right)=-\infty \).
Xét hàm: \(y={{x}^{4}}-2{{x}^{2}}-1\). Ta nhận thấy: \(\left\{ {\begin{array}{*{20}{c}}
{a > 0}\\
{ab < 0}
\end{array}} \right.\) nên hàm số có 1 điểm cực đại và 2 điểm cực tiểu. Suy ra hàm số có giá trị nhỏ nhất trên tập xác định chính là giá trị cực tiểu.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247