Cho mặt cầu (S) có bán kính \(R=a\) không đổi.

Câu hỏi :

Cho mặt cầu (S) có bán kính \(R=a\) không đổi. Hình nón (N) thay đổi có đường cao lớn hơn R, có đỉnh và đường tròn đáy thuộc mặt cầu (S). Thể tích khối nón (N) là \({{V}_{1}}\) và thể tích phần còn lại của khối cầu là \({{V}_{2}}.\) Khi \(\frac{{{V}_{2}}}{{{V}_{1}}}=\frac{19}{8}\) thì bán kính của hình nón (N) bằng:

A. \(\frac{a}{3}\).                     

B. \(\frac{2a\sqrt{2}}{3}\).         

C. \(\frac{a\sqrt{2}}{3}\).     

D. \(\frac{2a}{3}\).

* Đáp án

B

* Hướng dẫn giải

Thể tích khối cầu là \(V=\frac{4}{3}\pi {{R}^{3}}=\frac{4}{3}\pi {{a}^{3}}\).

Thể tích khối nón là \({{V}_{1}}=\frac{1}{3}\pi {{r}^{2}}h\)

\(\Rightarrow {{V}_{2}}=V-{{V}_{1}}\)

Ta có \(\frac{{{V}_{1}}}{{{V}_{2}}}=\frac{8}{19}\Rightarrow \frac{{{V}_{1}}}{V}=\frac{8}{27}\Rightarrow {{V}_{1}}=\frac{8}{27}V\)\(\Leftrightarrow \frac{1}{3}\pi {{r}^{2}}h=\frac{8}{27}.\frac{4}{3}\pi {{a}^{3}}\Leftrightarrow {{r}^{2}}h=\frac{32}{27}{{a}^{3}}\)

Mặt khác ta có \(h=R+\sqrt{{{R}^{2}}-{{r}^{2}}}=a+\sqrt{{{a}^{2}}-{{r}^{2}}}\)

\(\Rightarrow {{r}^{2}}\left( a+\sqrt{{{a}^{2}}-{{r}^{2}}} \right)=\frac{32}{27}{{a}^{3}}\Leftrightarrow 27{{r}^{2}}\left( a+\sqrt{{{a}^{2}}-{{r}^{2}}} \right)=32{{a}^{3}}\)

Đặt \(\sqrt{{{a}^{2}}-{{r}^{2}}}=t\,\,\Rightarrow \,\,{{r}^{2}}={{a}^{2}}-{{t}^{2}}\)

Khi đó ta có: \(27\left( {{a}^{2}}-{{t}^{2}} \right)\left( a+t \right)=32{{a}^{3}}\)\(\Leftrightarrow 27{{t}^{3}}+27a{{t}^{2}}-27{{a}^{2}}t+5{{a}^{3}}=0\Leftrightarrow 27{{\left( \frac{t}{a} \right)}^{3}}+27{{\left( \frac{t}{a} \right)}^{2}}-27\frac{t}{a}+5=0\)\(\Leftrightarrow \frac{t}{a}=\frac{1}{3}\Leftrightarrow t=\frac{1}{3}a\)

\(\Rightarrow {{r}^{2}}=\frac{8{{a}^{2}}}{9}\Rightarrow r=\frac{2\sqrt{2}a}{3}\)

Copyright © 2021 HOCTAP247