A. 6
B. \(3\sqrt{3}\)
C. \(2\sqrt{3}\)
D. 2
C
Gọi G là trọng tâm tam giác \(ABC\) \(\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\).
Khi đó
\(M{{A}^{2}}+M{{B}^{2}}+M{{C}^{2}}=100\)
\(\Leftrightarrow {{\left( \overrightarrow{MG}+\overrightarrow{GA} \right)}^{2}}+{{\left( \overrightarrow{MG}+\overrightarrow{GB} \right)}^{2}}+{{\left( \overrightarrow{MG}+\overrightarrow{GC} \right)}^{2}}=100\)
\(\Leftrightarrow 3{{\overrightarrow{MG}}^{2}}+2\overrightarrow{MG}.\left( \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC} \right)+{{\overrightarrow{GA}}^{2}}+{{\overrightarrow{GB}}^{2}}+{{\overrightarrow{GC}}^{2}}=100\)
\(\Leftrightarrow 3{{\overrightarrow{MG}}^{2}}+3{{\overrightarrow{GA}}^{2}}=100\left( GA=\frac{2}{3}\times \frac{8\sqrt{3}}{2}=\frac{8\sqrt{3}}{3} \right)\)
\(\Leftrightarrow {{\overrightarrow{MG}}^{2}}=12\)
\(\Leftrightarrow MG=2\sqrt{3}\).
Khi đó, quỹ tích điểm M là một mặt cầu có bán kính bằng \(2\sqrt{3}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247